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DETECTION AND SEGMENTATION OF BIRD SONG IN NOISY

ENVIRONMENTS

1. INTRODUCTION AND BACKGROUND

Recent advancements in machine learning and related technologies have made

possible automated data collection and analysis at greater scope and resolution than ever

before. Machine analysis of text, image, video, and audio now yield useful data in many

applications for science, industry, and commerce. Among recent applications of machine

learning for data collection is the analysis of bioacoustic audio for ecological studies.

Such bioacoustic data collection systems apply learning algorithms to recorded audio to

identify species and individuals of animal populations under study, to generate useful

data about species distribution and activity.

This thesis describes my work with the Oregon State Bioacoustics Group, an inter-

disciplinary collaboration with the goal of developing a system that will analyze large

sets of automatically-recorded audio data to better understand the behavior of bird pop-

ulations. This process involves several sequential steps: the collection of digital audio,

the extraction of bird sound from that audio, the identification of the species of each rec-

ognized bird sound, and the mapping of species counts back to the location of recorders

in the forest. The focus of this thesis is the implementation of the second step in this pro-

cess: the detection and extraction of bird sounds from field-collected audio. Sections 3

and 4 will describe two methods of segmenting distinct syllables of bird sound from field

recordings using supervised machine learning. Each of the methods involves decompos-

ing input audio to a time-frequency spectrogram, then applying supervised techniques
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to segment pixels of the spectrogram in a way analagous to image segmentation. The

segments output by these methods can be input to a species classification algorithm,

such as those described in [8] and [7], to generate species count data useful for ecological

research.

1.1. Organization of this thesis

The remainder of Section 1 will explain the motivation and ecological use of an

automated recording system, and give background information on the data collection

performed at the H. J. Andrews Experimental Forest. Section 2 will explain the formu-

lation of the audio segmentation problem, the definitions and terminology used in the

thesis, and the relationship of segmentation to the rest of the species identification sys-

tem. Section 3 will describe the ”Per-Pixel Time-Frequency” segmentation method first

developed to solve the segmentation task. Section 4 will desctibe the later-developed

”Superpixel Merger” method. Section 5 will introduce evaluation metrics, and will eval-

uate both proposed segmentation methods alongside a naive non-learning alternative.

1.2. Motivation and Ecological Importance

Birds are among the most visible and easily identifiable of vertebrate species. As

such, bird population and activity are widely used in ecological studies as markers for

overall environmental capacity[1]. Traditional methods of surveying bird activity, how-

ever, are labor-intensive and low-resolution. Typical studies of bird species activity in-

volve trained human observers watching and listening for birds at dozens of pre-determined

points in the environment, and taking counts of each species detected. This species count

data can be analyzed to reveal meaningful ecological patterns with respect to time, loca-
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tion, moisture gradient, tree density, and other environmental characteristics[1][2]. De-

spite the ecological importance of such data, several issues limit the scope and resolution

of species counts gathered with traditional methods.

The most pressing limit on manual data collection for bird activity is the require-

ment that an observer physically move to each site or location. This limits the number of

locations and the amount of time that can be spent at each one. Because each observer

cannot be present in multiple sites at once, some method of sampling must be performed

in which each site is observed at different times. Because the observers must physically

move from site to site, there may be biases in the collected data introduced by the time of

sampling. If the bird activity being measured changes over the course of several hours,

then a site observed early in the morning may not yield the same data when sampled

later in the day. Because of the travel time involved, sampling a single site multiple times

in one day may be prohibitively expensive. The requirement for physical presence forces

a tradeoff for data collection: more sites can be sampled each day by shortening the du-

ration of observation at each site, or fewer sites can be sampled to gain a more accurate

count at each site.

A second factor limiting accurate data collection is the difference between ob-

servers. Because each observer may have a different skill level or a different visibility

or volume threshold for counting each bird call, there may be bias introduced. To re-

duce this bias, observers can be randomly assigned to different locations, and common

training can be undertaken by all observers[1]. Random assignment reduces bias, but as

observers are individuals, logistical constraints can prevent a study from randomly as-

signing all data-gathering personnel. Likewise, observers who gathered data in previous

years or in physically distant locations cannot always be brought in to repeat their obser-

vation. While common training procedures can reduce the difference in data collected

by different individuals, training cannot remove the differences entirely. The perfor-
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mance of individuals in detecting and identifying birds varies not only with training, but

also age, experience, motivation, hearing acuity, eyesight, physical health, and fatigue

level[3]. Even with training, subtle differences between species can be recognized differ-

ently among data collectors, and one data collector may count a distant or less-noticable

bird that another does not.

Other issues that arise in the manual collection of bird counts include observers’

effects on the behavior of birds, changing environmental variables such as wind veloc-

ity, precipitation, cloud cover, and light intensity, and differences in the detectability of

each bird species[3]. A number of statistically-motivated techniques have been applied

to reduce the effect of these biases. These approaches include double sampling, distance

sampling, removal model estimation, and double-observer point counts[5]. These tech-

niques can increase the consistency and reliability of gathered data, but at the cost of

sample size. Techniques based on double-observer point counts, for example, can signif-

icantly increase reliability by providing an estimate of the rate of false negative counts

(birds that were noticed by one observer but not another). The double-observer tech-

nique still assumes equivalent performance by each observer, however, and reduces by a

factor of two the spatial or temporal scope of data collection.

Many of these issues that limit the scope of bird count data collection can be ame-

liorated by applying uniform, machine-automated bird species recognition to each site in

an area of study. This is the goal of the ongoing bioacoustics research based on data from

the H. J. Andrews Experimental Forest. By applying a single predetermined computer

analysis to all data collected, differences between observers are negated. By collecting

audio simultaneously at all sites, biases in data collection related to time of day or travel

time to sites are also negated. Because automatic audio recorders are limited only by

battery life and memory capacity, they can record for much longer than humans could,

yielding a larger data set.
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Although automated recorders provide an alternative to human data collection,

an automated system introduces limitations of its own. Audio-only systems will never

account for birds that do not produce sound, and will capture loud bird song at a larger

radius than soft. By combining automated recording with human-collected data, greater

accuracy and resolution can be achieved.

1.3. Data Collection and Experimental Site

FIGURE 1.1: A map of the H. J. Andrews Experimental forest, with data collection sites
labeled

The audio data collected from H.J. Andrews is gathered by thirteen Wildlife Acous-

tics Song Meter SM2 recording devices, each placed in a separate location in the forest.

The devices are referenced by site number, from site PC1 to site PC18 (some sites were
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discontinued), placed so as to cover a range of elevations and habitats. Each device con-

sists of a battery power source, stereo microphones and associated electronics, with a

removable flash memory card. Devices are placed and set to a daily schedule, then left

for approximately one week between battery and memory card replacements. The ma-

jority of recorded audio is in uncompressed 16kHz stereo PCM WAV format.

Audio has been recorded at each site on regular schedules between May and Au-

gust of each year, beginning in 2009. Only 13 of the 16 recorders operated during the 2009

season, and not all recorders operated each week. For the first half of the 2009 season,

audio was recorded 20 minutes per hour, 24 hours per day, at each site. Later adjustments

left the recorders collecting data only during hours of peak bird activity, approximately

5am-12pm. Although each year’s collected data is incomplete, the gathered data permits

year-to-year comparisons for several weeks in each site.

For a visual guide to the songs of species commonly recorded in the H.J. Andrews

dataset, refer to Appendix A. This document contains several examples of spectrogram

output containing syllables of song from each of the 13 species most commonly recorded

in the dataset. These species make up the vast majority of bird syllables detected in the

collected audio.

FIGURE 1.2: Left: A Song Meter recording device in H.J. Andrews. Right: An alternative
microphone configuration.
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2. AUDIO SEGMENTATION

2.1. Overview of Audio Segmentation

FIGURE 2.1: An example time-domain segmentation of audio collected from H.J. An-
drews. Top: Audio waveform. Bottom: Spectrogram

The term ”segmentation” is applied in the context of audio processing to mean

the separation of one audio recording into multiple recordings. Most applications of

automatic audio segmentation involve dividing a length of audio by splitting it at in-

stants in time. For example, work has been carried out in segmenting recorded audio

of radio or television broadcasts, by detecting instants in time that correspond to transi-

tions between scenes or commercials This type of segmentation, which will be referred

to as ”time-domain” segmentation, works well in domains such as television audio and

interactive voice response systems. Under certain criteria, time-domain segmentation

can work well in separating bioacoustic sounds, such as bird calls, from silence or non-
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interesting background noise. In problems where a small number of ”interesting” sound

events are spread out sparsely, where few or no sounds overlap in time, and where back-

ground noise is constant, identifying beginning and ending timestamps is sufficient to

isolate each event.

Many audio processing problems must deal with signals that do not meet these cri-

teria. In processing field-collected audio from the recorders in H.J. Andrews, recordings

must be segmented that contain multiple simultaneous vocalizing birds, at varying am-

plitudes and against varying background noise. In order to separate individual sounds

against varying background signals, a different type of segmentation is required, one that

separates sounds that occur simultaneously.

2.2. Time-Frequency Segmentation

FIGURE 2.2: An example waveform and corresponding spectrogram of a ten-second
audio clip containing syllables from three species. Darkened areas indicate higher audio
energy.

The data collected from recorders in the HJ Andrews forest is not amenable to
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simple time-domain segmentation for two main reasons. First, the background sound

that a syllable is heard against can vary with time of day, weather, and other conditions

such as the flow rate of nearby running water. This means that two time-domain audio

segments of the same syllable may look very different to an automated identification

system, due to interference from different background noises. Thus, the output of a time-

domain segmentation method may not allow accurate species classification. The second,

and crucial problem is that multiple birds will often vocalize simultaneously, especially

during peak morning hours. If two birds call in two different frequency ranges, but

overlapping in time, there is no meaningful way for time-domain segmentation to extract

two segments that each represent the vocalization of one bird.

Because of the shortcomings of purely time-domain segmentation, we take advan-

tage of the structure exhibited by bird calls in the time-frequency plane. By decomposing

a one-dimensional function of time, such as an audio signal, using a discrete Fourier

transform, we can generate a two-dimensional spectrogram. We represent spectrograms

as bitmap images in which the horizontal axis corresponds to time, while the vertical

axis corresponds to frequency. We visualize spectrograms in monochrome or color relief,

where the brightness or color of each pixel in the spectrogram represents the amplitude

of audio energy at a given interval of time and within a given interval of frequency.

2.2.1 Computational Auditory Scene Analysis

The ability of a human listener to concentrate selectively on one sound in a mixture

of many, a phenomenon known as the ”cocktail party problem”, has long been studied

by researchers interested in the analysis of audio. The field of ”auditory scene anal-

ysis” studies the psychoacoustic process by which human listeners separate an audio

signal into the multiple sound sources that comprise it [13]. Advancements in the under-

standing of the process have allowed work in emulating human auditory scene analysis

through computer models, a field of work known as ”computational auditory scene anal-
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ysis” [4] Sound separation methods based on CASA generally involve decomposition of

audio signals into the time-frequency domain, followed by segmentation of the audio

into regions represented by binary masks over the spectrogram [12]. The segmentation

methods proposed here work on the same principles; it is assumed that each discrete

sound (in this case, a syllable of bird call) can be represented by a binary mask over its

spectrogram.

2.2.2 Parallels with Image Segmentation

The segmentation of a spectrogram into contiguous regions that each represent a

meaningful sound is a similar problem to the segmentation of an image into regions that

represent objects. In the most common formulation of image segmentation, each pixel is

assigned to a segment, and each segment is is contiguous group of pixels that overlay a

part of the same object or texture. Spectrogram segmentation can be approached in the

same way, except that each pixel represents a time-frequency range rather than a position.

Image segmentation is often applied based on computed features describing the texture

of local regions of pixels. Analogously, a time-frequency texture can be computed from a

patch of pixels within a spectrogram.

Despite the clear similarities, there are a few important differences between spec-

trogram segmentation and image segmentation. While the horizontal and vertical spatial

dimensions are usually treated as equivalent in an image, the two are very different in

a spectrogram. The dimensions of a spectrogram are not fixed; different parameters for

the Fourier transform that generates the spectrogram can arbitrarily stretch the resulting

bitmap in the horizontal or vertical directions. Because vertical distance and horizontal

distance have distinct meanings in the time-frequency plane, many image segmentation

techniques, such as the use of scale-invariant and rotation-invariant [14] [15] features to

describe image texture, are not applicable. Segmentation of spectrograms must also deal

with transparency, a phenomenon not commonly accounted for in image segmentation.
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Two sounds that overlap in both the time and frequency ranges will create an additive

mixture, rather than one occluding the other.

2.3. Problem Formulation

The purpose of the two computational methods outlined in this thesis is to iden-

tify contiguous time-frequency regions (segments) within input spectrograms, that cor-

respond to individual bird vocalizations. We define a ”syllable” to be a distinct unit of

sound produced by a bird. Bird song exhibits organizational structure at multiple levels;

each syllable may consist of multiple repetitions of a single pattern, and likewise, multi-

ple syllables may combine in pre-determined patterns to form songs [6]. In our analysis,

no distinction is made between songs and calls, or other bioacoustic bird sounds. Instead,

the objective of the methods is to match each syllable to one segment, where a segment

is defined as a contiguous and identifiable region within the time-frequency plane.

By defining each segment as contiguous, we mean that each syllable must form

a connected component in the spectrogram. A bird song consisting of alternating low

notes followed by high notes could be segmented as multiple syllables, one per note.

Alternatively, it could be segmented as a single component containing the low and high

notes, and the connecting spectrogram pixels in-between.

In order for syllable segments to be useful for a species classifier, each syllable must

also be identifiable, which is to say it must share characteristics with other repetitions of

the same vocalization. This does not necessarily mean that each vocalization correponds

to one syllable. Each bird song may consist of multiple syllables, and any single level of

segmentation may break a single syllable into multiple segments. Because no single level

of segmentation can capture the full structure of sounds in a spectrogram, a system of hi-

erarchical organization would be necessary to fully describe a complex auditory environ-
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ment [4]. In order to simplify the problem of species classification, however, the methods

described here assume a one-to-one correspondance between syllables and contiguous

spectrogram segments. This formulation of the problem provides limited ability to count

individual vocalizing birds. However, it is sufficient for determining the presence or ab-

sence of species within the intervals of time sampled for spectrograms (typically 10 to 15

seconds in our work).

FIGURE 2.3: Two possible binary masks forming segmentations over a spectrogram.

2.4. Segmentation Output

Accurate segmentation of bird syllables is essential for successful automatic species

classification[10]. Because the objective of the system is to classify the species of birds, it

is essential that each audible bird call be represented by at least one segment, and that

calls by multiple birds not be merged into single segments. Each of the two segmenta-
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tion methods proposed here outputs contiguous two-dimensional monochrome image

regions, in which the value of each pixel is the noise-filtered spectrogram coefficient.

Each output spectrogram segment is clipped horizontally, so information about the seg-

ment’s position in time is not saved. However, the segment’s vertical spectrogram posi-

tion, corresponding to frequency, is not clipped, as the absolute frequency of a syllable is

an important input to features that may describe it, and is useful in species classification.

Classification of species using the output segments involves computing some de-

scriptive feature vector for each segment, using features that will capture the distinct

shapes and textures of bird species’ syllables. These segment feature vectors can be used

as individual inputs to a species classification scheme, in which a classifier is trained

on feature vector/species label pairs. Alternatively, as in [7], multiple segments can be

aggregated over each time period, and using Multi-Instance Multi-Label learning, a clas-

sifier can be trained to output presence/absence for each time period. The benefit of a

MIML approach is the relaxation of requirements for training data- rather than a require-

ment that each syllable be labeled by species, the MIML classifier can be trained using

binary vectors of species presence/absence per time period.
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3. PER-PIXEL TIME-FREQUENCY METHOD

FIGURE 3.1: Above: A noise-reduced spectrogram of a Swainson’s Thrush and a Pacific-
Slope Flycatcher. Below: The binary mask generated by the proposed method. Each
darkened region corresponds to a detected syllable of bird song.

3.1. Motivation and Approach

The Per-Pixel Time-Frequency segmentation method is based on the idea that each

pixel in a spectrogram can be classified as either part of a bird syllable or part of the

background, based on the amplitude of spectrogram pixels in a local window around it.

The method classifies each pixel in an input spectrogram as positive (bird syllable) or

negative (background), and then extracts contiguous regions of positive-labeled pixels

as segments. This allows the extraction of syllables with arbitrary shape and size in

the spectrogram, and allows the separation of syllables that overlap in either time or

frequency (but not both).

First, a spectrogram is generated for each input audio clip. Each spectrogram is
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noise-reduced and contrast-boosted. The method involves training a Random Forest de-

cision tree ensemble classifier to label individual pixels of a spectrogram, using feature

vectors that represent a patch of the spectrogram, centered on each pixel. The classifier

requires as training input a set of audio clips with associated human-generated training

labels. The training labels are two-dimensional monochrome bitmaps that form a mask

over the spectrogram of each audio clip. Zero-valued pixels in the training labels indicate

background or non-bird noise regions in the spectrogram, while nonzero pixels indicate

bird call. Pixels are randomly sampled from input training data, and for each pixel, a

feature vector is constructed based on the values of pixels in a window centered on it.

The training label assigned to the pixel is positive or negative based on the value of the

corresponding pixel in the training mask.

After training, the random forest classifier is applied to each pixel in the spectro-

grams of input audio. The output of the classifier at this step is a mask over the spectro-

gram, where the value of each pixel is the output of the random forest algorithm for that

pixel: a real value in the range 0 to 1 representing the proportion of trees in the forest that

’voted’ for a positive label. To compensate for noise from outlier examples, a Gaussian

blur is applied to this per-pixel probability mask. To translate from probability mask to

a set of spectrogram segments, a threshold θ is applied. Each contiguous region of pixels

with labels greater than θ is extracted as a syllable.

3.2. The Random Forest Algorithm

The per-pixel segmentation method is based on supervised classification using a

Random Forest classifier. Random Forest (RF) is an ensemble classifier consisting of a

collection of decision trees [9]. Given a set of training examples T , each tree hi in the RF

classifier is independently built from a bootstrap sample selected randomly with replace-
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ment from T . Trees are constructed by recursively applying the following procedure:

• Take as input a set of examples T, where each Ti = (x, y), x is a feature vector, and

y is the corresponding class label.

• If all labels y are the same, create a leaf node with the value y.

• Select a random subset F of log2(k) + 1 features, where k is the number of features

in x.

• For each feature d ∈ F , sort T on d and find the threshold value θd that splits T into

two sets Tle f t and Tright, such that the Gini index G(Tle f t, Tright) is maximized.

• Choose the feature and threshold (d, θd) such that G is maximized. If all possible

values of G are equal, then make a leaf node with the majority label. Otherwise,

create two child nodes by recursively applying the procedure using Tle f t and Tright

as input.

Each interior node of an RF tree corresponds to a test of the form xd < θ. Traversing the

tree with any input vector x will lead to a leaf node, which contains a single class label

y. When classifying an input x, each decision tree in the RF classifier casts a vote. The

output label for x is equal to the proportion of trees that voted for y.

3.3. Segmentation Process

3.3.1 Preprocessing

In each input audio file, a Hamming window is first applied to each frame. A

short-time FFT is then applied with a frame size of 512 samples, and an overlap of 256

samples between each subsequent frame, transforming the signal into a time-frequency

spectrogram. A whitening filter is subsequently applied to the spectrogram, to normalize
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the level of environmental noise at each frequency. Frequency ranges below 1kHz contain

little or no bird call [11], so a band-pass filter removes frequencies under 1kHz.

3.3.2 Random Forest Training

FIGURE 3.2: Above: Spectrogram of an example training input. Below: The human-
generated binary mask used for training.

The method requires as input a training set of audio files with corresponding bi-

nary masks (see 3.2). Each audio file is converted to a spectrogram, using the same pa-

rameters as the input data. Time-frequency units covered by the mask are used as pos-

itive examples of bird sound when training the classifier. All other elements, including

silence, static noise, and non-bird sound, are used as negative examples. The masks in

this set were created manually by visual and auditory examination of each spectrogram

and its corresponding audio. For the purposes of training and evaluation, these masks

are assumed to be ideal binary masks corresponding to audible bird call.

3.3.3 Classification

In training and classification, a feature vector xt, f is extracted for each time-frequency

unit S(t, f ) in the spectrogram. The vector xt, f describes the spectral characteristics of a

rectangular window surrounding (t, f ), and is defined by the following:
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• The frequency value f

• The values within a rectangular window surrounding (t, f )

S(i, j), i ∈ [t− tw, t + tw], j ∈ [ f − fw, f + fw]

centered at (t, f ), where 2tw + 1 is the size of the window in the time dimension

and 2 fw + 1 is its size in the frequency dimension.

• The variance σ2 of the units in this window

σ2 =
1

(2tw + 1)(2 fw + 1)

t+tw

∑
i=t−tw

f+ fw

∑
j= f− fw

(Si,j − µ)2

where µ is the mean value in this window.

We use a tw value of 6 T-F units and a fw value of 12 units, yielding a window spanning

192ms by 750hz in the T-F domain. In the classification process, a probability mask Mp is

generated by the outputs of the RF classifier, in which each value Mp(i, j) corresponds to

the fraction of RF trees that labeled Si,j as bird call.

3.4. Output and Analysis

After classification, a Gaussian convolution is applied to create a smoothed proba-

bility mask Ms.

Ms = Mp ? g, where g(x, y) =
1

2πσ2 e−
x2+y2

2σ2

This convolution is applied with a square kernel of 17x17 time-frequency units, and σ =

3.0. After smoothing, the probability mask is converted to a binary mask Mb by applying

a threshold

Mb(x, y) = 1 if Ms ≥ θ, or 0 otherwise

where 0 ≤ θ ≤ 1. The value θ controls the trade-off between false positive and false neg-

ative. A larger value leads to lower false positive rate but higher false negative rate. The
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smallest time-frequency regions identifiable as bird syllables typically have a duration of

approximately 160ms and a frequency range of approximately 300hz. Any regions in the

binary mask less than 90% of this size are discarded from the final segmentation.

FIGURE 3.3: Example spectrogram segments output by the per-pixel method, grouped
by species.
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4. SUPERPIXEL MERGER METHOD

4.1. Motivation

The ”Superpixel Merger” method is a heuristic-driven method of segmenting bird

syllables that borrows concepts from computer vision. Although it requires more pa-

rameter tuning than the per-pixel random forest, its greater complexity yields better ac-

curacy for a given amount of computation, especially if segmentation run-time must be

restricted to real-time or faster. The superpixel method has another advantage in that it

contains a mechanism for separating syllables that overlap in the time-frequency plane, a

situation that always results in under-segmentation for the per-pixel method. Although

the unintended merging of syllables is still a common problem, further development of

the superpixel method could conceivably improve performance significantly from the

per-pixel method.

The Superpixel Merger method involves an initial pre-segmentation of all pixels

into small, homogeneously-sized regions, formed such that boundaries of the regions

separate segments of bird call. These regions, analagous to ”superpixels” in image seg-

mentation, are subsequently clustered together to build a segment over each detected

syllable. After the initial pre-segmentation, two supervised Random Forest classifiers

are used: one to discriminate foreground (bird call) from background, and another to

separate adjacent sets of superpixels into individual segments.

Classifying individual pixels requires a feature vector to be constructed for each

pixel. Due to the large number of pixels, the size of this vector and the computation re-

quired to generate it must be strictly limited in order to achieve an acceptable training

and classification speed. The motivation behind the superpixel-based method is to re-

duce the number of elements to be learned or classified, and thus increase classification
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speed. Instead of classifying hundred of thousands of individual pixels, the superpixel

merger method splits each input spectrogram into a few hundred regions, then classifies

those regions. This allows more computation per feature vector, and thus a more detailed

characterization of each region of the spectrogram.

4.2. Superpixel Segmentation Process

4.2.1 Preprocessing

The segmentation process begins with the same spectrogram-generating process

undertaken in the per-pixel method. Each input audio file is transformed into a spectro-

gram using the FFT algorithm with Hamming-windowed frames of 512 samples each,

and an overlap of 256 frames. Resulting spectrograms are contrast-boosted for visibil-

ity by taking the square root of amplitude values. A whitening noise filter is applied to

reduce the effect of static background noise.

4.2.2 SLIC Algorithm

We use a method based on the Simple Linear Iterative Clustering (SLIC) algorithm

to pre-segment each input spectrogram into a set of evenly-sized regions, shaped around

potentially interesting features in the spectrogram. SLIC is an image segmentation al-

gorithm that clusters pixels in a combined five-dimensional RGB color and XY image

plane space to efficiently generate compact, nearly uniform ”superpixel” regions [16].

The algorithm involves transforming the R, G, B color channels into the L, a, b channels

of the CIELAB color space, then applying localized K-means clustering with a distance

measure as follows:

dlab =
√
(lk − li)2 + (ak − ai)2 + (bk − bi)2
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dxy =
√
(xk − xi)2 + (yk − yi)2

Ds = dlab +
m
S

dxy

where (lk, ak, bk) represents the CIELAB color of each pixel, (xk, yk) the spatial po-

sition of each pixel, and m an arbitrarily-chosen spatial weight variable controlling the

regularity of superpixel shapes. The value Ds represents the computed distance metric

between pixel k and cluster centroid i. Initial centroids for the K clusters are initially

distributed evenly in low-gradient positions across the X, Y plane of the image, and each

pixel is compared only to those clusters within a set spatial (L1) distance of 2S, where

S =
√

N/K and N is the number of pixels in the image.

Applied to an image for a given number of superpixels K, the SLIC algorithm seg-

ments all pixels in the image into K connected superpixel regions, with inter-region bor-

ders coincident with edges and changes of texture in the image. Because superpixel seg-

mentation algorithms such as SLIC are fast and require no training data and little parame-

ter tuning, they can be used in image segmentation to apply an initial over-segmentation,

followed by a selection and merging process to output components of adjacent superpix-

els. We use the same concept of oversegmentation followed by merging to first split

each input spectrogram into superpixels, then identify connected sets of superpixels that

make up syllables of bird call.

4.2.3 Modifications to SLIC

Although superpixel clustering is a useful way to reduce the number of entities

to be classified for segmentation, it must be adapted in several ways for use in a spec-

trogram. Syllables of bird call are not regions of constant texture bounded by distinct

edges, but instead are peaks of high energy separated by low-energy regions. Spectro-

grams generated in the preprocessing step are single-valued per pixel, and do not carry

separate information in the R, G, and B color channels. So, rather than the (L, a, b) color
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values of each pixel, we use a 5-valued vector comprised of computed per-pixel values

that separate pixels into regions centering on syllable peaks in the spectrogram. The five

computed values used are as follows:

• Blurred Spectral Energy

The noise-filtered spectrogram F is convolved with a Gaussian kernel to generate a

blurred spectral energy map B:

B = F ? g, where g(x, y) =
1

2πσ2 e−
x2+y2

2σ2

Blurred pixel energy for the spectrogram segmentation acts in a similar way to the

L value used in SLIC segmentation. Distancing pixels with different energy values

tends to cluster foreground pixels together, and using a Gaussian blur promotes

connectedness of pixels close to each high-energy peak. A sigma value of σ = 2.0

is used.

• Weighted Variance of Spectral Energy

The variance of spectrogram pixels within a window around each pixel is used as a

second element in the superpixel clustering feature vector. A Gaussian function is

again applied here, to weigh more highly pixels closer to the center of the window.

V(x, y) =
x+xw

∑
i=x−xw

j+yw

∑
j=y−yw

g(i− x, j− y)(F(i, j)− µ)

where g(x, y) =
1

2πσ2 e−
x2+y2

2σ2

Here, µ is the mean of pixel intensities in the window around (x, y), and xw, yw

represent the window size. The inclusion of pixel variance as a feature in the

pre-segmentation helps by promoting superpixel boundaries at the edges of high-

energy regions, where syllables meet background. A window radius of xw = yw =

5 pixels and a sigma value of σ = 3.0 are used.
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• Horizontal Sobel Gradient, Vertical Sobel Gradient

The distance measure used to cluster pixels includes the horizontal and vertical gra-

dient values, obtained by convolving the Gaussian blurred spectrogram generated

earlier with the Sobel gradient filter:

Gx =


−1 0 +1

−2 0 +2

−1 0 +1

 ∗ B and Gy =


−1 −2 −1

0 0 0

+1 +2 +1

 ∗ B

Including the two-dimensional gradient allows the superpixel segmentation to clus-

ter together pixels on the rising or falling edges of a syllable. It promotes superpixel

boundaries along the contours between high-energy peaks within each syllable, al-

lowing each syllable to be broken up into meaningful sub-units.

• Nearest-Peak Time, Nearest-Peak Frequency

A ’peak-finding’ function is applied to each pixel, after which each pixel is assigned

to a local maximum (or ’peak’) close to it in the spectrogram. For each pixel, the

weighted nearest peak is identified as the x,y position that satisfies the following

constraints:

Px(x, y) = arg max
i

F(i, j)g(i− x, j− y)

Py(x, y) = arg max
j

F(i, j)g(i− x, j− y)

where i ∈ [x− xw, x + xw], j ∈ [y− yw, y + yw], g(x, y) =
1

2πσ2 e−
x2+y2

2σ2

The peak-finding function essentially finds, for each pixel, the position of the ’high-

est peak’ close to that window, multiplied by a weight value that decays exponeni-

tally with distance from the pixel. By applying this function, each peak is assigned
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an area of pixels centered on itself with an average radius that increases with the

log of the peak’s height. This prevents rectangular-window artifacts and prevents

large peaks from overwhelming smaller peaks within their window.

Including this feature in the superpixel generation assists in spatial locality, and

promotes superpixel boundaries in regions between high energy peaks within syl-

lables that contain multiple peaks.

Whereas the SLIC algorithm uses a single m parameter to control the weight given to

spatial locality, the superpixel merger segmentation method uses a vector w of 5 weight

factors. This provides us with a new distance measure for the superpixel clustering of

spectrogram pixels:

db = B(xk, xy)− Bi

dv = V(xk, xy)−Vi

dg =
√
(Gx(xk, yk)− Gxi)2 + (Gy(xk, yk)− Gyi)2

dp =
√
(Px(xk, yk)− Pxi)2 + (Py(xk, yk)− Pyi)2

dxy =
√
(xk − xi)2 + (yk − yi)2

Ds = w0db + w1dv + w2dg + w3dp + w4dxy

Here, the vector of values [Bi, Vi, Gxi, Gyi, Pxi, Pyi, xi, yi] represents the value of cen-

troid i in the K-means clustering. In evaluation, the weight vector [5.0, 1.0, 1.0, 1.0, 1.0]

provided sufficient results with a K value of 600. A more finely-tuned weight vector

would fit superpixels more closely to meaningful features within the image, decreasing

the number of superpixels required. The localized pixel clustering itself is run, with the

defined distance measure, for 10 iterations. Initial centroids are evenly spaced through-

out the spectrogram. The resulting segmentation is filtered to enforce spatial connectivity
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of each superpixel segment, and superpixels of size less than a threshold (100 pixels) are

merged into their nearest neighbor.

4.2.4 Foreground-Background Superpixel Classifier

FIGURE 4.1: Example output of the superpixel classifier, foreground labeled superpixels
outlined in green and background in red.

The Superpixel Merger method relies on two trained classifiers, the first of which is

the foreground-background classifier. This is implemented as a Random Forest classifier,

which takes feature vectors including the following values:

• Pixel Energy: The mean and the variance of all spectrogram pixels in F belonging

to the superpixel to be classified are included in the feature vector.

• Gaussian Blurred Pixel Energy: The mean and variance of all spectrogram pixels in

the Gaussian blurred mask, B are included.
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• Nearest-Peak Frequency values: The mean and variance of the frequency (but not

time) values of the peaks nearest to each pixel, ie. Py(x, y) for all (x, y) belonging

to the superpixel, are included in the spectrogram.

• Histogram of Oriented Gradients: A vector of 8 values is calculated from the dis-

tribution of edge directions in the pixels belonging to each superpixel. An angle

Θ = atan2
(
Gy(x, y)Gx(x, y)

)
is calculated for each pixel (x, y) that satisfies the

condition
√

Gy(x, y)2 + Gx(x, y)2 > ε, for a small epsilon value. The gradient an-

gle value is discretized into one of the HOG vector’s 8 bins. An epsilon value of

0.01 was used for evaluations given in this thesis.

The classifier is trained by applying the superpixel segmentation to a training spectro-

gram, then labeling as foreground all superpixels that overlap more than 10% of their

area with positive-labeled regions in the training mask. All superpixels in each training

spectrogram are included in the training set.

4.2.5 Superpixel Merger Classifier

The second classifier in the merger method classifies edges between adjacent super-

pixels. Adjacent superpixels whose edges are classified as positive are merged together.

The training process is as follows:

• An input spectrogram is filtered and segmented into a set of superpixels.

• An adjacency matrix is computed, indicating which superpixels share borders in

the time-frequency plane.

• For each pair (i, j) of adjacent superpixels such that at least one of i or j is labeled

foreground by the ground-truth mask, a feature vector is computed for (i, j)

• Each pair (i, j) of adjacent superpixels is labeled positive if any positive-labeled

region in the training mask overlaps with the pixel border between i and j.



28

Edges between background superpixels are not considered part of the training set.

The feature vector constructed to describe a pair of superpixels contains a concatenation

of the features of each of the two superpixels’ foreground classifier features, as well as the

relative horizontal distance between the centers of the bounding boxes of the two super-

pixels. This results in a total feature vector size of 2N + 1, where N is the dimensionality

of the foreground/background superpixel feature vector. During training, the classifier

is trained with two equivalently-labeled inputs per edge in the training set, one directed

each way. During testing, the outputs of the classifier for each pair (i, j) and (j, i) are

averaged to determine the edge weight.

4.3. Output and Analysis

FIGURE 4.2: An example of the superpixel pre-segmentation of a syllable, followed by
foreground/background filter and merging of superpixels

After input audio data are converted to spectrogram form, noise-filtered, and pre-

segmented into the initial superpixel set, the foreground/background classifier is applied

to each superpixel, to generate a probability value pi for the superpixel, analagous to the

probability values output by the per-pixel method. A threshold parameter θ separates

foreground and background by discarding all superpixels for which pi < θ.

After only foreground superpixels remain, the merger classifier is applied to each

adjacent pair (i, j) of remaining superpixels, generating a probability value mij for the
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pair. Note that the classifier is applied twice for each pair, once for each of the two pos-

sible orderings. A second threshold parameter δ is applied, and all adjacent superpixels

for which mij + mji ≥ 2δ are labeled as the same segment. Each labeled segment is subse-

quently extracted from the spectrogram and output in the same fashion as the per-pixel

classifier.
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5. EVALUATION

5.1. Data Sets

Two data sets were used in the evaluation of the two proposed methods. The first

consists of an annotated set of 625 audio segments, each 15 seconds, collected in 16kHz

PCM format. The audio segments are selected, two per hour, from a 24 hour recording at

each of 13 sites across the H.J. Andrews Experimental Forest. These data were recorded

between May and July 2009. The manual ground-truth labels in this set tend to include

a larger area around each syllable, and have more positive examples of mergers between

adjacent superpixels.

The second data set consists of 166 annotated audio segments, 10 seconds each,

collected in the same format. The audio segments are paired when possible, one from

each of the years 2009 and 2010, with two segments selected from each of several days

in the season, ranging from May 13 to August 4. Recordings from thirteen sites are used.

For each site/day/year, at least two segments are included: one each from the early

morning (4:30am to 6:00am) and one from the late morning (6:00am to 8:00am). The

manual labels for this set cover less area around each syllable, and include more divisions

between syllables.

Due to the constraints of training and testing time, two-fold cross-validation is

used for each of the evaluations given. Each evaluation metric is tested once for each of

the two methods, for each of the two data sets.
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5.2. Evaluation Metrics

5.2.1 Time-Frequency Area Metric

This error measure is concerned only with the number of spectrogram pixels cor-

rectly classified, aggregated over the full set of spectrograms. Each pixel in every input

spectrogram is classified as either a True Positive, False Positive, True Negative, or False

Negative. First, a threshold parameter θ is selected, and pixels in the output mask with

a foreground probability less than this value are zeroed from the probability mask. The

manual human-labeled mask over the spectrogram is loaded, and all positive-labeled

pixels in it are classified as True Positive, if their element in the probability mask is

nonzero, or False Negative otherwise. All negative-labeled pixels in the manual mask are

labeled True Negative if their correpsonding output probability is zero (below threshold),

and False Positive otherwise.

The parameter θ is varied, to plot a curve of values ranging from all-negative to

all-positive classification. For each θ value, the True Positive Rate and False Positive Rate

are calculated:

TPR = TP
TP+FN FPR = FP

FP+TN

Each calculated (FPR, TPR) pair is plotted on a Receiver Operating Characteristic

(ROC) curve, to show the tradeoff between precision and recall at varying θ values.

5.2.2 Segment Recall Metric

This metric simply measures the number of connected regions of positive-labeled

pixels (ie, syllables) marked by the manual segmentation that were labeled as true by

the segmentation method, divided by the total number. Each positive-labeled region is

counted as a recall if any part of its area forms part of a segment output by the segmenta-

tion process. To compare varying methods equivalently, segment recall is plotted against

the area metric’s True Positive Rate, which ranges from 0 to 1 for the evaluations of each
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method. This displays the number of segments sucessfuly recalled for a given number of

pixels. This metric will penalize a method that maximizes the recall of pixels from large

syllables, at the expense of smaller ones. Note that for a given TPR, the FPR will vary, so

the segment recall graph should be referenced against the ROC curve of time-frequency

area.

5.2.3 Segment Merger Error

The merger error metric measures the proportion of separate positive-labeled syl-

lable regions in the manual labels that are joined together by at least one positive-labeled

syllable region in the output segmentation. A merger error of 0 indicates that no two syl-

lables are joined by an output segment. A merger error of 1 indicates that every syllable

is joined to at least one other. This metric penalizes methods that indiscriminately merge

adjacent syllables into single segments. This is a drawback particularly of the per-pixel

time-frequency method. Merger error is also plotted against TPR from the previous ROC

metric, and should be referenced against it.

5.3. Energy Threshold Method

To compare both methods to a non-learning segmentation scheme, an energy thresh-

olding segmentation is evaluated against the same data sets. This segmentation involves

the following steps:

• Spectrograms are generated from input audio and noise-reduced using the same

parameters as both learning methods.

• A Gaussian blur with σ = 6.0 is applied to the noise-reduced spectrograms.

• Each spectrogram is normalized such that its maximum value is 1.0
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• A threshold θ is applied to the blurred spectrogram, and all contiguous regions

above that threshold are extracted as syllables.

• Syllables with area less than a threshold of 100 pixels are removed

5.4. Results

Results are given for each of the three defined error measures, based on the output

of each of the three given classifiers, on two data sets.

5.4.1 HJA 625-Spectrogram Set

The ROC curve shows the superpixel merger method out-performing the per-pixel

method at false positive rates below about 10%, although the per-pixel method provides

slightly higher recall with lower precision.

FIGURE 5.1: ROC curve for time-frequency area, tested on the 625-spectrogram HJA
dataset
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FIGURE 5.2: Segment recall, tested on the 625-spectrogram HJA dataset

FIGURE 5.3: Merger error for each method, tested on the 625-spectrogram HJA dataset
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5.4.2 ”Set A” 166-Spectrogram Set

The ROC curve for pixel accuracy shows the per-pixel method slightly outperform-

ing the superpixel method at lower false-positive rates, with the superpixel method tak-

ing the lead for FPR of greater than about 0.04. The merger error, however, shows a

problem with the per-pixel method: at θ levels low enough to capture more than 90%

of the true bird syllables, the per-pixel method merges many adjacent segments together.

This is more apparent in the Set A dataset due to the greater separation between syllables

in the manual masks that segmentations are compared to.

FIGURE 5.4: ROC curve for time-frequency area, tested on the 166-spectrogram Set A
dataset
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FIGURE 5.5: Segment recall, tested on the 166-spectrogram Set A dataset

FIGURE 5.6: Merger error for each method, tested on the 166-spectrogram Set A dataset
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6. CONCLUSION AND FUTURE WORK

This thesis has explained the importance of time-frequency syllable segmentation

as part of a bird species classification system. Two methods were proposed for the ex-

traction of bird call syllables from the time-frequency spectrogram. Evaluation of the two

methods shows that each achieves higher recall and precision for certain inputs.

Although it is not noted in the evaluation metrics, the running time for superpixel

segmentation is characteristically much less than the per-pixel method. Restricting the

number of Random Forest trees or the size of feature vectors to achieve a real-time or

faster speed results in slightly degraded performance for the superpixel method, but

highly degraded performance for the per-pixel.

Further improvements to the superpixel method could include the use of a more

sophisticated graph cut algorithm to separate sets of superpixels. Additional features

that describe the joint characteristics of adjacent pairs of superpixels could also improve

the superpixel method. Further additions, such as hierarchical merging of superpixels

or the use of an ensemble of superpixel pre-segmentations with different weights could

also improve the superpixel method’s accuracy at the expense of runtime.
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